Tropomodulin Protects α-Catenin-Dependent Junctional-Actin Networks under Stress during Epithelial Morphogenesis

Elisabeth A. Cox-Paulson,1 Elise Walck-Shannon,2 Allison M. Lynch,3 Sawako Yamashiro,4,5 Ronen Zaidel-Bar,3,6 Celeste C. Eno,3 Shoichiro Ono,4 and Jeff Hardin1,2,3,*

1Department of Biology, State University of New York at Geneseo, NY 14454, USA
2Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
3Department of Zoology, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
4Department of Pathology, Emory University, Whitehead Research Building, Room 105N, Atlanta, GA 30322, USA
5Present address: Mechanobiology Institute Singapore, T-Lab, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
6Present address: Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, 6-3 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
*Correspondence: jdhardin@wisc.edu

Summary

α-catenin is central to recruitment of actin networks to the cadherin-catenin complex [1, 2], but how such networks are subsequently stabilized against stress applied during morphogenesis is poorly understood. To identify proteins that functionally interact with α-catenin in this process, we performed enhancer screening using a weak allele of the C. elegans α-catenin, hmp-1, thereby identifying UNC-94/tropomodulin. Tropomodulins (Tmods) cap the minus ends of F-actin in sarcomeres [3]. They also regulate lamellipodia [4], can promote actin nucleation [5], and are required for normal cardiovascular development [6, 7] and neuronal growth-cone morphology [8]. Tmods regulate the morphology of cultured epithelial cells [9], but their role in epithelia in vivo remains unexplored. We find that UNC-94 is enriched within a HMP-1-dependent junctional-actin network at epidermal adherens junctions subject to stress during morphogenesis. Loss of UNC-94 leads to discontinuity of this network, and high-speed filming of hmp-1(fe4);unc-94(RNAi) embryos reveals large junctional displacements that depend on the Rho pathway. In vitro, UNC-94 acts in combination with HMP-1, leading to longer actin bundles than with HMP-1 alone. Our data suggest that Tmods protect actin filaments recruited by α-catenin from minus-end subunit loss, enabling them to withstand the stresses of morphogenesis.

Results and Discussion

C. elegans epidermal morphogenesis provides an excellent context in which to investigate the relationship between actin and α-catenin in vivo. The embryonic epidermis contains three types of cells: (1) dorsal cells, which eventually fuse into a syncytium; (2) lateral (seam) cells, arranged in a single row along the anterior-posterior axis on each side of the embryo; and (3) ventral cells. A conserved cadherin-catenin complex (CCC), including HMR-1/cadherin, HMP-2/β-catenin, HMP-1/α-catenin, and JAC-1/p120-catenin [10, 11], is crucial for epidermal morphogenesis [12, 13]. Actomyosin-mediated contractile stresses are transmitted by circumferential actin filament bundles (CFBs) in dorsal and ventral epidermal cells. CFBs insert orthogonally at junctional boundaries between lateral epidermal cells and dorsal and ventral epidermal cells and help to drive the 4-fold elongation of the embryo. CFB anchorage at adherens junctions (AJs) requires the CCC [14–16].

Functional interactions between multiple pathways are important for both focal adhesions and hemidesmosomes [17, 18]. However, a systematic search for similar functional interactions has not been carried out for AJs. We performed such a search, using feeding RNA interference (RNAi) against genes on chromosome I to find lethal enhancers of a weak loss-of-function allele of hmp-1, fe4. *hmp-1(fe4)* mutants exhibit embryonic and early larval lethality; escapers develop into fertile adults that have body-shape defects [11]. The fe4 lesion results in an amino-acid substitution in the VH3 domain of HMP-1 [11], which slightly weakens F-actin binding (S. Maiden and J.H., unpublished data).

We identified several genes implicated in regulating cell-cell adhesion, including the AF6/Atfadin ortholog (afd-1) and an exocyst component (sec-6) [19–21], validating our approach. A full analysis, including results for the other five chromosomes, will be published elsewhere (A.M.L. et al., unpublished data). Among the enhancers was UNC-94, a tropomodulin (Tmod) family member.

To examine the functional relationship between HMP-1 and UNC-94, we first performed four-dimensional Nomarski microscopy on *hmp-1(fe4);unc-94(RNAi)* embryos (Figure 1A). Wild-type embryos elongated to approximately 4-fold their initial length before hatching. *unc-94(RNAi)* embryos appeared superficially wild-type, even though *unc-94(RNAi)* lowered UNC-94 protein to virtually undetectable levels (*Figure S1A* available online). *hmp-1(fe4)* embryos exhibited defective elongation (*Figure 1A*) and approximately 80% died as embryos and L1 larvae (*n* = 95). *hmp-1(fe4)* embryos that hatched typically elongated to only twice their original length and had severe body-shape defects. In contrast, 100% of *hmp-1(fe4);unc-94(RNAi)* embryos exhibited embryonic lethality (*n* = 93). Of these, 95% failed to elongate past the 1.5-fold stage, and they then retracted to their original body length (*Figure 1A*), compared with only 13% of *hmp-1(fe4)* embryos (see *Movie S1* for movies of representative embryos). Thus, HMP-1 and UNC-94 together are essential for epidermal elongation.

Second, we performed immunostaining with an antibody that we previously used to show that UNC-94 is found at body wall-muscle cell-cell boundaries and at the minus ends of sarcomeric thin filaments [22, 23]. UNC-94 was first detectable at the 2-fold stage and was enriched at seam-ventral and seam-dorsal cell borders, the same borders where CFBs transmit stress during elongation (*Figure 1B*; see *Figure 1C* for the relationship between CFBs and junctional actin in a wild-type embryo). Although UNC-94 is near AJs, it is distal...
to them and extends into the cytoplasm, in the same location as the junctional-actin band that runs parallel to AJs. Consistent with this localization pattern, UNC-94 did not communoprecipitate with HMP-1 under conditions in which HMP-1 and HMP-2 did (Figure S1B). Significantly, UNC-94 did not localize to epidermal junctions in hmp-1(zu278) homozygotes, which produce a truncated HMP-1 protein incapable of binding actin [16] (Figure 1D), indicating that HMP-1's actin-binding activity is required for mobilization of actin filaments containing UNC-94 near epidermal-cell borders. In contrast, UNC-94 largely localized normally to epidermal-cell borders in hmp-1(fe4) embryos (Figure 1D) and localized in pharyngeal cells in a HMP-1-independent manner (Figure S1C). Thus, HMP-1 acts upstream of UNC-94 at epidermal-cell borders normally under tension, but this functional relationship is not mediated through direct physical binding.

To better understand why hmp-1(fe4);unc-94(RNAi) embryos fail to elongate, we covisualized AJs and actin during this process using phalloidin staining and JAC-1::GFP. Strikingly, seam-dorsal and seam-ventral epidermal-cell borders in hmp-1(fe4);unc-94(RNAi) embryos were highly disrupted, appearing ripped apart and yielding a characteristic zigzag pattern (Figure 2A). Junctions between other epidermal cells were no more perturbed than those in hmp-1(fe4) homozygotes. In areas of perturbed JAC-1::GFP, only some faint actin filaments were visible. Despite this, CFBs were still present in hmp-1(fe4);unc-94(RNAi) embryos, interfacing with the edges of the mislocalized JAC-1::GFP (Figure 2A). The junctional-actin belt was still present but was more diffuse in hmp-1(fe4);unc-94(RNAi) embryos compared to hmp-1(fe4) (Figure 2A, black arrows). The perturbed AJs and actin organization at these epidermal-cell borders in hmp-1(fe4);unc-94(RNAi) embryos probably account for their failed elongation.

Immunostaining experiments demonstrated that HMR-1 colocalized with mislocalized JAC-1::GFP in hmp-1(fe4);unc-94(RNAi) embryos, indicating that the entire CCC was affected (Figure 2B, top). In contrast, AJM-1, a component of the more basal AJM-1/DLG-1 complex, was unaffected in hmp-1(fe4);unc-94(RNAi) embryos (Figure 2B, bottom). Thus, UNC-94 specifically regulates the CCC and its associated actin.

To better characterize the range of defects in unc-94(tm724) and unc-94(RNAi) embryos, we scored wild-type and unc-94 loss-of-function embryos stained with phalloidin based on the extent of F-actin disruption (Figure S2). We found defects in both junctional actin and CFBs, suggesting that UNC-94 has a role not only in maintaining proper junctional actin, but also in the anchoring of CFBs to the junctional-actin band. To examine junctional-proximal actin defects in more detail, we measured the extent to which junctional actin was contiguous at seam-dorsal and seam-ventral boundaries in wild-type and unc-94(tm724) embryos using phalloidin staining (Figures 2C and 2D). In wild-type embryos, 73.7 ± 2.7% (mean ± SEM; n = 11 cells) of the junctional perimeter contained signal, compared with 48.9 ± 4.2% in unc-94(tm724) embryos (n = 16 cells; significantly different, p < 0.0002, heteroscedastic t test). Similarly, the mean length of contiguous regions of actin at junctions was significantly greater in wild-type embryos (0.41 ± 0.11 μm, n = 11 cells) versus unc-94(tm724) embryos (0.13 ± 0.02 μm, n = 16 cells; significantly different, p < 0.04).

Such defects may have a common cause: defects in the junctional-actin band may affect proper anchoring and/or spacing
of CFBs. Vertebrate Tmod3 may similarly stabilize F-actin at lateral cell membranes in immortalized epithelial-cell lines [9].

Taken together, these data suggest an important role for HMP-1 and UNC-94 in regulation of AJs and junctional actin at cell borders under stress during morphogenesis. Next, we observed CCC dynamics in living, prearrested embryos in jac-1::gfp-expressing embryos using high-speed filming (Figures 3A–3C). In wild-type embryos, JAC-1::GFP was restricted to the apicobasal contact zones between epidermal cells (Figure 3A). unc-94(tm724) and unc-94(RNAi) embryos exhibited JAC-1::GFP dynamics similar to wild-type, though rarely some mislocalization occurred (Figures S3A and S3B). In hmp-1(fe4) homozygotes, the JAC-1::GFP distribution was slightly fragmented, and some JAC-1::GFP was transiently pulled away from the main area of the junction (Figure 3B). Strong zygotic loss of hmp-1 function in zu278 homozygotes yielded a similar mild effect (Figure S3C), consistent with our previous report [24]. In contrast to single mutants, however, dislocation of JAC-1::GFP was greatly enhanced in hmp-1(fe4);unc-94(RNAi) embryos (Figure 3C). Reslicing images through the z axis of these extended regions showed that they are linear and occur perpendicular to the AJM-1::GFP extensions (>0.5 μm long) as hmp-1(fe4) embryos (Figure 3D). Moreover, as demonstrated in Figure 2C, the AJs of hmp-1(fe4);unc-94(RNAi) embryos became progressively more disrupted as time goes on, suggesting that applied stress results in dystrophic disruption of these junctions. Significantly, these regions extended into both seam and ventral borders. Actin is depleted in areas of disrupted JAC-1::GFP; however, CFBs (white arrow) and diffuse junctional actin (black arrow) are still visible. The anterior is to the left in all panels. Bar represents 10 μm.

(B) In hmp-1(fe4);unc-94(RNAi) embryos, the CCC is selectively perturbed. Prearrested hmp-1(fe4);unc-94(RNAi) embryos expressing JAC-1::GFP were stained for either HMR-1/cadherin or AJM-1. Color merges show that HMR-1 (red) colocalizes with JAC-1::GFP (green), and that AJM-1 is not perturbed in regions where JAC-1::GFP is mislocalized. For all images in (A)–(D), anterior is to the left.

(C) Junctional-proximal actin in representative wild-type (WT; top) and unc-94(tm724) embryos (bottom). Regular puncta of actin are connected along the junction in wild-type embryos, but gaps are present in junctions from unc-94(tm724) embryos. Bars represent 10 μm.

(D) Box plots of the total percentage of junctional area in which actin signal is present (left) and the average length of contiguous regions of actin (right). Blue: First quartile; white: third quartile; pink: mean. The circle represents a mild outlier; X represents extreme outliers. In wild-type, there are occasional stretches of long, unbroken domains of positive signal along entire cells or multiple cells (X).

(data not shown). Their spacing and linearity is consistent with them being caused by pulling forces exerted by the CFBs. hmp-1(fe4);unc-94(RNAi) embryos formed about twice as many JAC-1::GFP extensions (>0.5 μm long) as hmp-1(fe4) embryos (Figure 3D). Moreover, as demonstrated in Figure 2C, the AJs of hmp-1(fe4);unc-94(RNAi) embryos became progressively more disrupted as time goes on, suggesting that applied stress results in dystrophic disruption of these junctions. Significantly, these regions extended into both seam and ventral or dorsal epidermal cells, with many more in the latter (Table S1). Tissue-specific rescue experiments further demonstrated that although UNC-94 plays a role in both seam cells and non-seam cells, there is a more stringent requirement in non-seam cells (Figure S4A).

The phenotypes we observed are very similar to those described previously in rga-2/RhoGAP mutants [25], though they are less pervasive along the apicobasal axis. We therefore assessed whether reducing stress on epidermal junctions could ameliorate the JAC-1::GFP extensions observed in hmp-1(fe4);unc-94(RNAi) embryos, using RNAi against let-502/Rho kinase. hmp-1(fe4);unc-94(let-502(RNAi)) embryos exhibited a significant decrease in the number of JAC-1::GFP extensions (Figure 3D), and arrested embryos showed less JAC-1::GFP mislocalization (cf. Figure S3D versus Figure S3E). This suggests that the AJs in hmp-1(fe4);unc-94(RNAi)
embryos are not able to withstand the stress transmitted by CFBs during elongation and instead become pulled in the direction of the exerted force. To further investigate the effects of let-502 loss of function on junctions, we used a temperature-sensitive let-502 mutant to assess whether LET-502 activity is required for recruitment of UNC-94 to cell borders and found that this is not the case, although cell elongation along the anterior-posterior axis is required for compaction of the zone of UNC-94 expression along seam-nonseam borders (Figure S4B).

To gain mechanistic insight into how HMP-1 and UNC-94 act together to modulate actin networks, we performed in vitro actin-binding and - bundling assays. We showed previously that UNC-94 alone can inhibit latrunculin A-induced depolymerization of plus end-capped C. elegans F-actin and that UNC-94 blocks minus-end F-actin depolymerization induced by UNC-60B/ADF-cofilin [23]. We also showed previously that full-length HMP-1 alone can coassemble with actin filaments in vitro. This activity appears to be regulated by intramolecular interactions within the full-length protein, given that the full-length protein coassembly less avidly than C-terminal fragments [16]. We therefore examined the combined effects of HMP-1 and UNC-94 on actin-filament morphology in vitro using fluorescently labeled actin filaments capped at the plus ends by CapZ, to which HMP-1, UNC-94, or both were added (Figure 4A). Added alone, HMP-1 induced actin bundles, as did other τ-catenins [26–28]. However, actin bundles generated in the presence of both HMP-1 and UNC-94 (n = 603, average length = 6.1 μm ± 2.7 SD) were 42% longer than those resulting from HMP-1 alone (n = 663, average length = 4.3 μm ± 2.8; significantly different, p < 0.001, initial recruitment may be modulated by Arp2/3-mediated actin branching or by processive plus-end proteins that stimulate more linear networks [2]. Once actin networks form at AJs, however, they must withstand stress and resist dissolution. Our results indicate a new role for Tmod at the minus ends of actin filaments in this process.

In the embryonic epidermis of C. elegans, UNC-94 is enriched at a subset of epidermal-cell borders that interface with CFBs, within the dense network of junctional-actin bundles that runs lateral to AJs at these cell borders. Our in vitro analysis indicates that UNC-94 can protect filaments bundled by HMP-1 from minus-end subunit loss, because this assay was performed under conditions that favor depolymerization from the minus end rather than addition of monomers to plus ends. Because some Tmods promote actin nucleation [5], a non-mutually exclusive possibility is that UNC-94 also plays a supporting role in de novo formation of junctional-actin filaments.

In hmp-1(fe4);unc-94(RNAi) embryos, inefficient actin recruitment by mutant τ-catenin, coupled with minus-end subunit loss, may lead to a less robust junctional-actin network, which in turn results in lateral instability of AJs. If CFBs are mechanically coupled to the junctional-actin band near their tips (e.g., via actin-crosslinking proteins or through τ-catenin itself), stress will tend to be distributed laterally rather than addition of monomers to plus ends. Because some Tmods promote actin nucleation [5], a non-mutually exclusive possibility is that UNC-94 also plays a supporting role in de novo formation of junctional-actin filaments.

Figure 3. AJs of hmp-1(fe4);unc-94(RNAi) Embryos Exhibit Abnormal Dynamics
(A–C) Images from spinning-disk confocal movies of embryos expressing JAC-1::GFP are shown. (a–c) show an enlargement of the boxed regions in (A–C) at 30 s intervals for 5 min. Movie S2 corresponds to (a–c). In wild-type embryos (A), JAC-1::GFP localizes to epidermal-cell borders; in hmp-1(fe4) embryos (B), there are occasional areas in which JAC-1::GFP is transiently extended away from its normal position. In hmp-1(fe4);unc-94(RNAi) embryos (C), this behavior is more pronounced. Bar represents 10 μm.

(D) Bar graph showing quantification of the number (mean ± SEM; n indicated in parentheses) of JAC-1::GFP extensions longer than 5 μm formed at either the seam-dorsal or seam-ventral cell border during 5 min of filming. Embryos at comma to 1.5-fold stage were scored. Each extension was measured only once, at its longest length. Asterisk: significantly different from hmp-1(fe4) and hmp-1(fe4);unc-94(RNAi);let-502(RNAi) (Tukey test: p < 0.01). Black diamonds: not significantly different from hmp-1(fe4) (p > 0.5).

Figure 4B), and this increase is due in part to an increase in long bundles (Figure 4B, bracket). Taken together, these data indicate that HMP-1 and UNC-94 probably act together to generate robust actin filaments in the junctional-actin band, which in turn resist mechanical deformation due to Rho-mediated actomyosin contractility.

The actin cytoskeleton and AJs cooperate to drive numerous epithelial morphogenetic events [2]. AJs recruit actin via τ-catenin;
observed in hmp-1(fe4);unc-94(RNAi) embryos. We propose that the retraction phenotype exhibited by hmp-1(fe4);tmd-1(RNAi) embryos (in which the embryos extend to ~1.5-fold and then retract to their original length) may be due to a combination of uneven CFB-pulling forces from abnormally arranged CFBs and weakened ultrastructure of the junctional-actin band. This could result in failure to translate the stress applied by CFBs into the epidermal cell-shape changes that drive elongation.

Junctional-actin bands are present in many epithelial-cell types. The forces applied to them can be aligned predominantly along the junction or orthogonal to it, the latter being the case during C. elegans embryonic elongation (reviewed in [29]). Our work suggests that regulation of minus-end actin dynamics via Tmod plays an important role in promoting stability of actin networks under this orthogonal stress. Future experiments aimed at teasing apart the ultrastructure and biochemical regulation of junctional-actin bands should help to clarify their function, as well as how multiple actin regulators contribute to the mechanical integrity of AJs.

Supplemental Information

Supplemental Information includes four figures, one table, two movies, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2012.06.025.

Acknowledgments

We thank Yuji Kohara for providing complementary DNA, Shohei Mitani for providing the unc-94(tm724) allele, Ryan King and the Ivan Rayment lab for technical assistance in expression and purification of His-tagged UNC-94, and Michael Joyce for help with coimmunoprecipitation assays. We thank Vida Prattis and Bill Bement for critical reading of the manuscript and Theresa Grana for helpful comments. This work was supported by National Institutes of Health (NIH) grants NRSA GM067410 and R15 HD059952 to E.A.C.-P.; NIH grant R01 GM58038, Muscular Dystrophy Association grant 4218, and National Science Foundation grant IOB 0518081 to J.H., and NIH grant R01 AR48615 to S.O.

Received: November 17, 2011
Revised: April 9, 2012
Accepted: June 6, 2012
Published online: July 5, 2012

References


